Skip to main content

Hologram : New Way Of Photography

“And nothing's wrong when nothing's true
But I live in a hologram with you.”
Holography is the science and practice of making holograms. Typically, a hologram is a photographic recording of a light field, rather than of an image formed by a lens, and it is used to display a fully three-dimensional image of the holographed subject, which is seen without the aid of special glasses or other intermediate optics. The hologram itself is not an image and it is usually unintelligible when viewed under diffuse ambient light. It is an encoding of the light field as an interference pattern of seemingly random variations in the opacity, density, or surface profile of the photographic medium. When suitably lit, the interference pattern diffracts the light into a reproduction of the original light field and the objects that were in it appear to still be there, exhibiting visual depth cues such as parallax and perspective that change realistically with any change in the relative position of the observer.

In its pure form, holography requires the use of laser light for illuminating the subject and for viewing the finished hologram. In a side-by-side comparison under optimal conditions, a holographic image is visually indistinguishable from the actual subject, if the hologram and the subject are lit just as they were at the time of recording. A microscopic level of detail throughout the recorded volume of space can be reproduced. In common practice, however, major image quality compromises are made to eliminate the need for laser illumination when viewing the hologram, and sometimes, to the extent possible, also when making it. Holographic portraiture often resorts to a non-holographic intermediate imaging procedure, to avoid the hazardous high-powered pulsed lasers otherwise needed to optically "freeze" living subjects as perfectly as the extremely motion-intolerant holographic recording process requires. Holograms can now also be entirely computer-generated to show objects or scenes that never existed.
Holography is distinct from lenticular and other earlier autostereoscopic 3D display technologies, which can produce superficially similar results but are based on conventional lens imaging. Stage illusions such as Pepper's Ghost and other unusual, baffling, or seemingly magical images are also often incorrectly called holograms.
WORKING

Holography is a technique that enables a light field, which is generally the product of a light source scattered off objects, to be recorded and later reconstructed when the original light field is no longer present, due to the absence of the original objects.Holography can be thought of as somewhat similar to sound recording, whereby a sound field created by vibrating matter like musical instruments or vocal cords, is encoded in such a way that it can be reproduced later, without the presence of the original vibrating matter.

Laser

In laser holography, the hologram is recorded using a source of laser light, which is very pure in its color and orderly in its composition. Various setups may be used, and several types of holograms can be made, but all involve the interaction of light coming from different directions and producing a microscopically fine interference pattern which a plate, film, or other medium photographically records.
In one common arrangement, the laser beam is split into two, one known as the object beam and the other as the reference beam. The object beam is expanded by passing it through a lens and used to illuminate the subject. The recording medium is located where this light, after being reflected or scattered by the subject, will strike it. The edges of the medium will ultimately serve as a window through which the subject is seen, so its location is chosen with that in mind. The reference beam is expanded and made to shine directly on the medium, where it interacts with the light coming from the subject to create the desired interference pattern.
Like conventional photography, holography requires an appropriate exposure time to correctly affect the recording medium. Unlike conventional photography, during the exposure the light source, the optical elements, the recording medium, and the subject must all remain perfectly motionless relative to each other, to within about a quarter of the wavelength of the light, or the interference pattern will be blurred and the hologram spoiled. With living subjects and some unstable materials, that is only possible if a very intense and extremely brief pulse of laser light is used, a hazardous procedure which is rare and rarely done outside of scientific and industrial laboratory settings. Exposures lasting several seconds to several minutes, using a much lower-powered continuously operating laser, are typical.

Apparatus

A hologram can be made by shining part of the light beam directly into the recording medium, and the other part onto the object in such a way that some of the scattered light falls onto the recording medium. A more flexible arrangement for recording a hologram requires the laser beam to be aimed through a series of elements that change it in different ways. The first element is a beam splitter that divides the beam into two identical beams, each aimed in different directions:
  • One beam (known as the illumination or object beam) is spread using lenses and directed onto the scene using mirrors. Some of the light scattered (reflected) from the scene then falls onto the recording medium.
  • The second beam (known as the reference beam) is also spread through the use of lenses, but is directed so that it doesn't come in contact with the scene, and instead travels directly onto the recording medium.
Several different materials can be used as the recording medium. One of the most common is a film very similar to photographic film (silver halide photographic emulsion), but with a much higher concentration of light-reactive grains, making it capable of the much higher resolution that holograms require. A layer of this recording medium (e.g., silver halide) is attached to a transparent substrate, which is commonly glass, but may also be plastic.

Process

When the two laser beams reach the recording medium, their light waves intersect and interfere with each other. It is this interference pattern that is imprinted on the recording medium. The pattern itself is seemingly random, as it represents the way in which the scene's light interfered with the original light source — but not the original light source itself. The interference pattern can be considered an encoded version of the scene, requiring a particular key — the original light source — in order to view its contents.
This missing key is provided later by shining a laser, identical to the one used to record the hologram, onto the developed film. When this beam illuminates the hologram, it is diffracted by the hologram's surface pattern. This produces a light field identical to the one originally produced by the scene and scattered onto the hologram.

Comments

Popular posts from this blog

Spring Security with JWT for REST API

Spring is considered a trusted framework in the Java ecosystem and is widely used. It’s no longer valid to refer to Spring as a framework, as it’s more of an umbrella term that covers various frameworks. One of these frameworks is Spring Security , which is a powerful and customizable authentication and authorization framework. It is considered the de facto standard for securing Spring-based applications. Despite its popularity, I must admit that when it comes to single-page applications , it’s not simple and straightforward to configure. I suspect the reason is that it started more as an MVC application -oriented framework, where webpage rendering happens on the server-side and communication is session-based. If the back end is based on Java and Spring, it makes sense to use Spring Security for authentication/authorization and configure it for stateless communication. While there are a lot of articles explaining how this is done, for me, it was still frustrating to set it up for the f...

Java Functional Interfaces

  The term   Java functional interface   was introduced in Java 8. A   functional interface   in Java is an interface that contains only a single abstract (unimplemented) method. A functional interface can contain default and static methods which do have an implementation, in addition to the single unimplemented method. Here is a Java functional interface example: public interface MyFunctionalInterface { public void execute(); } The above counts as a functional interface in Java because it only contains a single method, and that method has no implementation. Normally a Java interface does not contain implementations of the methods it declares, but it can contain implementations in default methods, or in static methods. Below is another example of a Java functional interface, with implementations of some of the methods: public interface MyFunctionalInterface2{ public void execute(); public default void print(String text) { System.out.println(t...

Java Logger

In Java, logging is an important feature that helps developers to trace out the errors. Java is the programming language that comes with the logging approach. It provides a Logging API that was introduced in Java 1.4 version. It provides the ability to capture the log file. In this section, we are going to deep dive into the Java Logger API. Also, we will cover logging level, components, Logging handlers or appenders, logging formatters or layouts, Java Logger class, What is logging in Java? In Java, Logging is an API that provides the ability to trace out the errors of the applications. When an application generates the logging call, the Logger records the event in the LogRecord. After that, it sends to the corresponding handlers or appenders. Before sending it to the console or file, the appenders format that log record by using the formatter or layouts. Need for Logging It provides the complete tracing information of the application. It records the critical failure if any occur in ...